Digital Twins at the China-Europe Frontier Forum on “Progress in Ocean and Science Technology”, September 29th (online)

Organized by the European Academy of Sciences (EurASc) and the Chinese Academy of Sciences (CAS), around 300 participants attended the two day online forum. Twenty speakers from European and Chinese institutes presented a range of topics around ocean and science technology. One entire session was dedicated to Digital Twins of the Oceans (DTOs), demonstrating there exists a significant interest and a variety of international efforts to push forward this innovative technology.
The speakers highlighted that DTOs have the potential to help us with many global environmental but also social challenges, such as pollution, sustainable fisheries or protection management. In addition to the scientific interest, there is also considerable political momentum supporting DTOs: the UN Decade of Ocean Science for Sustainable Development (2021-2030), and the G7 One Ocean Summit. Moreover, a lot of infrastructure that can be used for creating DTOs is already in place (the Global Ocean Observing System and International Oceanographic Data and Information Exchange internationally; Copernicus, the European Marine Observation and Data Network and Blue-Cloud at the EU level). The goal is to bring together and harmonize this data, in order to create a comprehensive, user-friendly DTO application. Furthermore, the private sector will need financial incentives to participate in DTO projects, and governments and regulators must be able to fully participate and benefit.
Below find a summary of the individual presentations.

Digital Twins of the Ocean (DITTO) a global UN Ocean Decade Programme for Sustainable Development (2021-2020)” by Martin Visbeck (Geomar, Germany EurASc)

DITTOs offer a unique opportunity to combine observational with digital data. Traditional observational data informs us of the current state of the ocean. Recent technological advances in data modeling allow us to predict how the ocean will develop in the future, as well as analyze how it behaved in the past. DITTO merges the best of both worlds via a two-way connection: observational data from the real ocean is used to refine the digital ocean, and manipulating the virtual twin can highlight regions of the real ocean in need of better observational data.

DITTOs are a virtual replica of the real ocean with a two-way connection. Observations from the real ocean refine the digital twin; manipulating the twin highlights regions of the real ocean in need of more observations. This generates valuable knowledge for a range of stakeholders. Image by Martin Visbeck.

DITTOs generate the scientific knowledge necessary for an evidence-based policy making, hereby producing “the science we need for the ocean we want”(motto guiding the United Nations Decade of Ocean Science for Sustainable Development (2021-2030)). DITTOs empower ocean professionals, scientists, policymakers and the general public to visualize ocean data and knowledge, enabling the answering of ‘what if’ questions under differing climate change and policy scenarios.

Current ocean observation and information platforms are catering to an Initial Value Problem: “What is the state of the ocean today, and how will it change tomorrow?” Digital Twins include anthropogenic intervention, hereby making it a Boundary Value Problem: “How will ocean change if humans act (what – if scenarios)?”

Whilst certain data infrastructure is already in place, there are still some challenges to be met for DITTOs to move from theory to implementation. A co-design approach is needed to advance the existent ocean observing networks (e.g. GOOS, EOOS, Atlantos) to meet the needs for Digital Twins. DTOs will optimize the observing networks while simultaneously benefitting from them, creating a ‘virtuous circle’. On the side of ocean prediction, artificial intelligence and machine learning must be used to simulate change to the ocean system by human intervention. Moreover, we need to create a Digital Ecosystem which democratizes the data world, builds trust in open data as well as provides wide and equitable access. Last but not least, we need to provide a platform to efficiently deliver Digital Twin information. So-called Decision Making Theaters, 3D immersive environments, offer a striking method to visualize the knowledge generated by Digital Twins.

In order to answer these challenges, DITTO, a project under the United Nations Decade of Ocean Science for Sustainable Development, has established 6 Working Groups with the aim of developing a comprehensive digital representation of the ocean. The Working Groups are:

WG1: Supportive ocean observations and data systems 

WG2: Data analytics and prediction engines 

WG3: Data lakes and interoperability 

WG4: Interactive layers and visualizations 

WG5: Framework – architecture, design and implementation  (TURTLE)

WG6: Education, training and capacity development 

The Working Groups are taking up their tasks as we speak and plan to publish position papers. The next global DITTO Symposium will take plane in Xiamen, China in November 2023. In the meantime, help expand the DITTO network by joining our Partnership Programme!

The European Digital Twin Ocean infrastructure, models and application” by Pierre Bahurel (Mercator Ocean International)

A Digital Twin of the Ocean is a European community effort. Endorsed by the European Commission, Ursula von der Leyen and Emmanuel Macron both stated the tremendous potential and need for a DTO during the One Ocean Summit in February 2022. As a collaborative initiative, the Digital Twin of the Ocean “will make ocean knowledge open-access” and “a platform for global cooperation”. It is a unique tool combining multivariable earth system models with citizen science observations, and can help preserve a sustainable ocean and marine biodiversity.

Mercator Ocean International is implementing France’s commitment to a European DTO. In April 2022, 70 marine & digital experts came together at the 1st Digital Ocean Forum in Paris. Four main requirements were identified for the successful creation of a DTO:

(1) Accessing ocean data & new sensors;

(2) Enabling ocean modelling;

(3) A Digital Framework

(4) Serving the Ocean Intelligence

Four building blocks in the DTO value chain. Image by Pierre Bahurel.

Lead by Mercator Ocean and financed by Horizon Europe, two DTO projects have been established to address these requirements: EDITO Infra and EDITO Model Lab.

EDITO Infra is building a public infrastructure for a European DTO. Using existing European assets, EDITO Infra will deploy multiple DTO applications from current and future digital twin projects. The idea is to collect and harmonize all DTO applications on a single, widely accessible and user-friendly platform. Moreover, EDITO Infra is set to be fully compatible with Destination Earth (a project by the EU Commission set to build a Digital Twin of the Earth System).

EDITO Model Lab is a consortium of 14 partners with ocean modeling expertise from 9 European countries. In particular, these partners offer expertise in supercomputing, Artificial Intelligence, software development, operational oceanography as well as user applications. The Model Lab can then be used to answer ‘what-if’ scenarios, for example: “the impact of reducing macro-plastics emitted from major rivers”. After creating a scenario, researchers then identify the framework conditions (area, time emission), which in turn informs the data needed to answer the scenario (in this case: ocean circulation and river plumes simulation). Then, by combining observational data (emulation of surface current) with modeling output (Lagrangian trajectory), the Digital Twin can be used to address the initial ‘what-if’ scenario.

Mr. Bahurel concluded his presentation by stating that international openness is a founding and structuring principle of all European DTO endeavors. EDITO is directly contributing to the UN Decade of Ocean Science for Sustainable Development, and the DITTO Programme offers a natural framework for international cooperation on DTOs.

Digital Twin Ocean and its Applications for China Coastal Regions” by Fei Chai (Second Institute of Oceanography)

DTOs have the potential to improve China’s management of its coastal areas. At the interface between the ocean, land, and atmosphere, coastal zones host an abundance of natural resources (97% species abundance, 86% of global fish catches, 30% crude oil production) and fulfill important ecosystem functions (25% marine primary productivity, 21% marine carbon sink). Thus, whilst constituting only 7% of the global ocean’s surface area, coastal regions require special attention and protection from intensified human activities and climate change.

Xiamen University is leading Coastal-SOS: a UN Decade endorsed project advancing the scientific understanding of critical coastal ocean health issues. Common stress factors include eutrophication (due to river run-off and agricultural land-use), industrial pollution (heavy metals, petroleum, organic pollutants) and intensive aquaculture farming. Six Coastal Systems in South-East Asia (Changjiang Estuary, Minjiang Estuary, Xiamen Sea Area, Pearl River Estuary, Gulf of Thailand and Johor Strait) are being used to test and improve one common approach: Observations-Modeling-Digital Twin of the Ocean. These regions are all undergoing rapid urbanization, and require an Integrated Coastal Management (ICM) strategy for a sustainable development and protection against environmental damage.

Digital Twins of the Ocean can be used to combine observational data with model simulations, yielding a comprehensive ICM strategy for coastal protection in especially endangered areas.

Current observational stations include data from the sky (remote sensing and micro satellites), the air (unmanned aerial vehicles remote sensing), the earth (shore-based stations and video monitoring), as well as the ocean (buoys, ship survey, seabed monitoring). A range of partners (Xiamen University, industrial partners, Fujian Tendering Group and Sanming Investment Group) are cooperating to further advance these observational methods, producing accurate, automated, real-time data. Combining this observational data with ROMS-CoSiNE Modeling could provide a real-time physical-biogeochemical forecasting system for Chinese coastal waters, enabling the prediction of hypoxia or eutrophication events. Another initiative counts on the contribution of citizens: if these are located close to a registered site of littering, they will be notified via mobile phone so that they may remove the litter.

DTOs can thus significantly contribute to the sustainable management of Chinese coastal regions. Xiamen University is highly interested in working closely with international communities to establish regional, targeted and easy-to-use DTOs for simulating and forecasting ocean conditions. The University proposed hosting the second International Digital Twins of the Ocean Summit in November 2023.

Digital Twin opportunities in support of the Biodiversity Agenda” by Isabel Sousa Pinto (Ciimaar, University of Porto)

The last Global Assessment Report on Biodiversity by IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services) came to the alarming finding that the global species extinction rate today is at least tens to hundreds of times higher than the average over the last 10 million years.

In addition to being a moral question about our relationship with nature, the loss of biodiversity also threatens the livelihood of billions of people. One in five people rely on wild species for income and food, and > 10,000 wild species are harvested for human consumption.

Thus, a variety of national and international initiatives are fighting against the loss of biodiversity; for example the EU’s 2030 Biodiversity Strategy and the UN Convention on Biological Diversity. Whilst terrestrial biodiversity is managed by national territories, the marine case is not so straightforward. Marine biodiversity in Areas Beyond National Jurisdiction (ABNJ), i.e. the High Seas, is not subject to national sovereignty rights. ABNJs cover almost two-thirds of the world’s oceans, and contain resources and biodiversity of high ecological and socio-economic importance. Currently, the marine biodiversity governance framework for ABNJ is a patchwork of international organizations and treaties. This jumble prohibits an accurate overview of the state of many marine species, let alone the planning of sustainable management strategies. In order to enhance cooperation and coordination between the many existing legal instruments, in 2017 the UN adopted a resolution to develop a legally binding instrument for the protection and sustainable use of marine biological diversity in ABNJs.

This is where DTOs come in. In order to protect marine biodiversity, we need to assess the current state of marine life, and understand how it will change in the future. Biodiversity is affected by a range of physical, biological and chemical factors; the Essential Biodiversity Variables (EBV) are the measurements necessary to study, report and manage biodiversity change.

The Essential Biodiversity Variables required to manage biodiversity change. Defined by the Biodiversity Observation Network (GEO BON).

DTOs can help us determine which observational data is needed to obtain EBVs, and also integrate data from multiple sources (in-situ & modeling) to make smart conservation choices. This will allow us to determine, for example, where to set up aquaculture facilities or wind farms, how to manage fish populations or algal blooms.

The Ocean/Climate Model Development and its Support to Digital Twin” by Fangli Qiao

One of the 7 desired outcomes of the UN Decade of Ocean Science is “a predicted ocean where society understands and can respond to changing ocean conditions”. Accurate ocean models are a prerequisite for the development of DTOs, but current models face two major challenges:

(1) The simulated Mixed-Layer-Depth (MLD) is too shallow in the summer (compared to observations);

(2) There is a big Sea-Surface-Temperature (SST) bias.

Research shows that by including small scale surface waves, models simulate MLDs and SSTs that are much more accurate.

Wave-tide-circulation coupled model. Taken from Fangli Qiao’s presentation.

In order to build such an improved model, the “Decade Collaborative Centre for Ocean-Climate Nexus and Coordination amongst Decade Implementing Partners in P.R. China” (DCC-OCC) was launched in January 2022. The DCC-OCC will support initiatives addressing UN Decade Challenge 5: unlock ocean-based solutions to climate change. It is hosted by the First Institute of Oceanography (FIO) of the Ministry of Natural Resources of China, in partnership with the International CLImate VAriability Research Project Office (CLIVAR-ICPO), the China National Marine Data and Information Service (NMDIS), the China National Marine Environmental Forecasting Center (NMEFC), the China National Satellite Ocean Application Service (NSOAS), and the Regional Training and Research Center on Ocean Dynamics and Climate (RTRC-ODC).

The approved and endorsed DCC-OCC and OFS is looking for partners, and could play an important role in developing a DTO.

Leave a Reply

Your email address will not be published. Required fields are marked *